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According to (3.14) 

cos cp = 2 cost (e/2) - 11, 8 (1 - v) (2 - vy - i 

(2 - v)cos cp + 3v cos (cpl + w) 2 8 (1 - v)i(Z - v) - 2 + Y -3~ = 
2 (v2 - 5v + 2)/(2 - v) > 0 for ('<Vo 

The proof of inequality (3.12) is completed. 
Ey starting from the above exposition, an example can be constructed for Vv>v,, in which 

inequality (3.1.2) does not hold. Thus, an annular crack can be taken as G, W and an annular 
crack with a tiny "expansion“ (Fig.5) as &(P). Selection of the location of the point R(I) 
(in which (3.12) is not satisfied), and the "expansion", as well as the direction of the load 
t is shown in Fig.5, where the relationship F/Z =arctg I/G should be satisfied. 
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FINITE-PART INTEGRALS IN PROBLEMS OF THREE-DIMENSIONAL CRACKS* 

A.M. LIN'KOV and S.G. MCGILEVSKAYA 

An effective method is proposed for solving the boundary integral equation 
(BIE) for the problem of a crack along a curvilinear surface in an elastic 
space on the basis of the transformation of the initial integrodifferential 
equation into an equation without derivatives. This is achieved by using 
the concept of the finite-part integral (FPI). Quadrature formulas are 
presented for such integrals over arbitrary convex polygons by approximating 
displacement discontinuities on the boundary by polynomials. 

The well-known BIE for three-dimensional cracks contain either 
derivatives of the unknown functions or derivatives of a surface integral 
/l-7/. In both cases the presence of the derivatives significantly 
complicates the solution. However, as is shown in /8/, these difficulties 
are reduced in the case of a plane crack of normal discontinuity if the 
FPI concept is utilized /9, lo/. In this connection, it is useful to 
investigate the possibility of applying such an approach to the more 
general problem of a crack of arbitrary discontinuity and to develop the 
numerical side of its utilization. Both aims are pursued in this paper: 
the extension of this idea to the general case of three-dimensional cracks 
is given and methods are indicated for evaluating the integrals that 
originate by presenting quadrature formulas convenient for the numerical 
realization of the BIE method on a computer. 

1. The consideration of the problem is based on the form of the BIE for three-dimensional 
cracks, which contains only derivatives of integrals over the surface but no derivatives of 
the displacement discontinuities under the integral sign /l, 6/. The integrals in the BIE 
have singularities generated by the term 1,'r and combinations of its powers with differences 
between the coordinates of the control point x and the variable point of integration g (ris 
the distance between the points). This does not permit differentiation under the integral 
sign since it results in a non-integrable singularity (in the general case the original 

*Prik1~~~t~.~e~~.,50,5,344-850,1986 
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integral is already singular). The asymptotic behaviour of the terms under the integral sign 

in the displacement discontinuities does not depend on the curvature of the crack surface as 
5 -, I if this surface is sufficiently smooth, and is exactly the same as the behaviour of the 

corresponding terms in the problem of a plane crack of arbitrary discontinuity. Then eliminat- 

ing and appending components corresponding to a certain piece of a plane crack touching the 

surface under consideration at the control point s. it is always possible to have singular 
terms just in the operator corresponding to the plane crack of arbitrary discontinuity. 

Consequently, it is sufficient to concentrate on just the latter case. 

2. The BIE for a plane crack of arbitrary discontinuity in an infinite medium (/2/, for 

instance) in the form mentioned that contains only derivatives of intergrals, have the form 

Here c(x), rl(x), T*(X) are components of the stress vector atthepoint x of the crack 

surface S along the x3, xl, .rz'? axes (the zl,zI axes are in the plane of the crack while the z3 
axis is perpendicular), 20 (EJ, u G), and u(E) are components of the displacement discontinuity 

along the 53, Xl, Z? axes at the point of integration g of the surface S, where the dis- 
continuities are evaluated as the difference between the displacements of the crack upper and 

lower edges if the lower is considered the edge for which the x3 axis is the external normal 
with respect to the domain it bounds; A = d?,'13r,~ -k- Z&r," is the Laplace operator, E, v are 

young's modulus and Poisson's ratio of the medium, and the integrals marked with a bar are 

understood in the principal-value sense. 
It is proved /8/ for the operator A corresponding to the case of a crack of normal dis- 

continuity that the formal transfer of the Laplace operator under the integral sign to yield 

A (I/'/) = l/r3 becomes legitimate if the divergent integral obtained, that does not exist even 

in the principal value sense, i.e. 

is treated in a special manner. 

This formula acquires meaning if the integral on the right-hand side, marked with the 

symbols v.f., is considered as a FPI. In the case being studied the order of the singularity 

only exceeds the dimensionality of the domain of integration by one, and consequently, the 

FPI, in conformity with its definition /9, lo/, can be evaluated according to the following 

rule /8/. A circular domain s,, of arbitrary radius r0 is separated out around the point s, 

a term I(' (X)/r3 is subtracted and added and the integral of I'+ is evaluated formally by 

substituting r = v,,. By definition 

Attention can here be turned to the fact that the FPI of a positive function is a negative 

number. If the function 10 has an analytic expression in the domain S, and the integral of 

w/r3 is taken in quadratures, then the FPI can be evaluated by substituting the integration 

limits corresponding to the boundary S ,, in conformity with the formal expression. 
It is useful to perform an analogous passage to differentiation under the integral sign 

in the formulas or the tangential force vector components T~,T* also. In addition to (2.2) 
we hence obtain 
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The proof is presented in the example of the second of these formulas. We have 

where K is a certain neighbourhood of the noint x belonging to S, and S/K is the complement 

to s. The first two components can be differentiated under the integral sign. Then 

The second integral on the right-hand side of this equation is represented in the form 

[.t5)dS-r.(\)\.l.j~dS-3v.i.j~~(:)dS~ 

Ji 1, h 

from which we obtain an equation that differs from the second equation in (2.3) by the presence 

of the component U(X) J on the right-hand side, where 

It remains to prove that J= 0. A circular domain SO is used as the domain K in /8/ in the 

proof of this equation. In order to illustrate the independence of the result from the 

selection of the domain K here, a rectangle o< EL< b; cd &< d is taken. The point x lies 

within the rectangle. Integration in quadratures yields 

c, 1 J, - o, c2 = 3% - c, b, = I, ~ 11. b, -em x2 - d 

( $ L: ( II .:L ( %J, npE z ii;* /. b?“, bsi 01’ ‘~ bt’, b,” _ r2? ~~ big 

(the three dots denotes the component obtained from the previous commutation of a and b). The 

second and third integrals in the expression for J, which neither exist in the ordinary nor 

the principal value sense, are evaluated formally in conformity with the definition, by 

substituting the limits of integration corresponding to the boundary of the domain K into the 
analytic formulas obtained. Consequently, we obtain for the rectangular domain K 

dS=+($--j.:.... (2.5) 

where it can be verified that the first of Eqs.(2.5) agrees with the result of the calculation 

It follows from (2.4) and (2.5) that J- 0, i.e., the validity of the second equa 

(2.3). 

tion in 

The BIE system (2.1) is written in the following final form by using (2.2) and (2 .3) 

(2.G) c(+l,:s.f. j+d.S 

71(\)=/L[(1~~~)\..f.\i;iiii(~)dS-~~v.f. 

2 
’ :iv v.f. 
I s 
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which is convenient for applications in that the formulas contain no derivatives. 
It is evident that since the circular domain S,can be enclosed in a sufficiently 

arbitrary domain of any configuration K and the integral over K's, has no singularities, any 
other domain enclosing a circle, particularly triangles or rectangles, can be taken as the 
subdomain in which the integral is formally evaluated. For such a domain, the integral of a 
function with a non-integrable singularity can also be taken formally and appropriate limits 
of integration corresponding to the domain boundary can be substituted. In addition to the 

main idea of going over from (2.1) to (2.6) the integration over the rectangle used 
above illustrated, this fact, which is important for all its obviousness, 
since it permits a substantial simplification of the calculations by using the 
same elementary cells (triangles, squares, and rectangles) as the domains K over which the 
FPI are calculated into whichthesurface S is separated in the discretization of the problem. 
This advantage was utilized (and substantially increased the efficiency of the calculation as 
compared with the selection of the circular domain S, as K) in ill/*, (*See also: Zubkova 
I.A., Development of a method of analysing elevated mountain pressure zones on the basis of 
solving a three-dimensional problem on the stress distribution around cleaning drifts. 
Candidate Dissertation, National Scientific-Research Surveying Institute, Leningrad, 1983.) 
where the integration was performed over squares. 

3. It is useful to take one more step in developing methods of evaluating the divergent 
integrals being obtained: not only to use the arbitrary domains of integration K surrounding 
the control point x but also to get ridofthe condition that the integral over such a domain 
would necessarily exist as a formal analytic expression. This can be achieved by considering 
the FPI as the limits of the corresponding ordinary integrals. The formulas obtained are a 
natural corollary of thefactthat the BIE themselves are the result of an analogous passage 
to the limit from the body under consideration onto the surface S. 

The following equality can be obtained from (2.2) for the density f(z) having continuous 
derivatives to second order inclusive in the neiqhbourhood of the point 5 T: z : 

The properties of a double-layer potential are used here. 
Calculations fortherigh-hand side can be performed in a cylindrical system of coordinates 

with origin at the point x and coordinates p,cr,z, related to the original Cartesian 
coordinates by means of the formulas E, - z1 = p U'U* ~3. & -x2 = psin m,x3 = 2. In evaluating 
the integral in the right side, the term annihilating the component 2af(x)is, is separated 
out at once. Moreover, since f(E) possesses continuous derivatives to second order inclusive, 
the following representation holds: 

where g, = cos cpdf!dx, $- sin 'p df:h+, g, (s, p, 'p) is a continuous function and iinl g, (x, p, (c) p2 = 0 
as p -> 0. 

Then by integration and passage to the limit, we obtain 

where p (y) is understood to be the value of p at a point ofthecontour of the domain K that 
has the angular coordinate q. 

This deduction is essentially the reproduction of calculations in the proof of the 
continuity of the double-layer potential, while the right-hand side is a well-known expression 
/12, p.239/. 

By using potential theory, expressions can also be obtained in an anlogous manner for 
the three other kinds of integrals in (2.6) 
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We have g, == gz = 0 for the constant of the function f(g) in the domain K. 
There hence follows for the triangular element (figure, a) fur f (9 = 1 

The meaning of the notation cli,~fi, xi, pi is clear from Fig.la. 
In the case of a right triangle with side a and point s at the centre,wehave I, = -i8ia; 

-I, = J3 = -9,a; I, = 0 when one of the vertices is on the s1 or Q axis. 
For the quadrangular domain (figure, b) the summation is extended up to four in the 

formulas written for the triangular element andthemeaning of the notation is as before. 
Formulas for an arbitrary convex polygon are obtained analogously. 

In the case of a rectangle with sides parallel to the coordinate axes, we have expressions 
far It and I, that have already been obtained in Sect.2 by another method, while the obtain 
for 1, and I4 

If the point x is at the intersection of the diagonals of a rectangle with sides a,b, 
then 

If the density has the form 1 (s) *= cg I- clzl ./- cPrz -+ c++~x~, then g, (s) = (cr -j- c&ces tp +- (ca j- 
C&) sin m, g?(S)= c,sin 'p cOS ‘p and formulas (3.1) for the FPI yield 

Il=(cl -i_ c.q)5cosBInp(~)dy.+(c,i-casl)~sinrl ltip(p)dTf 
0 b 



657 

2.2 

c3 
s 

p(q) sincpcoscpdq -(co + clxl _t cgx? + cQxrxi) 
2n dq 

s 
- 
P(m) 

0 0 

18 = (Cl + csxa) y c~s~cplnp(~~)& f (cg + ~3x1) x 
0 

?n: 211 

\ 
sin 'p cos2 'p In p (cp) dq~ + cs 

s 
p (q) sin rp co9 ‘p dv - 

b 0 
?JT 

(co + Cl21 f cnxa + C&X2) 
s 

sdq. 

0 

(co + Cl51 + czxa + C85152) 
2x sin v cos ‘p dv 

S P (Ip) 
0 

For the numerical solution of problems, the coefficients co, Cl, c2. c3 are determined from 

the condition that the approximating function takes specific values at the four nodal points 

of the cell. Formulas for expressing f(x) by higher-order polynomials are also obtained 

analogously. Other approximations can also be utilized. Numerical integration is hence used 
in cases when the integrals in (3.1) are not expressed by analytic formulas. 

The results presented yield a convenient means for solving BIE for cracks of arbitrary 

discontinuity since the passage to the form (2.6) eliminates differentiation, while utilization 

of the formulas obtained makes evaluation of the integrals (3.1) no more complicated than the 

evaluation of ordinary integrals. By separating the crack surface into elementary cells and 
giving the approximation of the desired function (or known function, in mixed problems), 

integration over the cell containing it can be performed for each control point using the 

formulas presented. For the remaining cells the integrals have no singularities and are taken 
by ordinary methods. The remaining calculations are also completely traditional. 

In conclusion, we note that the concept of the FPI introduced by Hadamard /13/ and 

contributing to the creation of the thoery of generalized functions, has now been interpreted 
within the framework of this theory. Both formal questions of regularizing integrals of the 
type under consideration, as well as questions associated with their evaluation /14/ are 
solved in it. 
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THE ASYMPTOTIC STABILITY OF SYSTEMS WITH DELAY* 

A.P. BLINOV 

Sufficient conditions for the existence of a finite domain cf attraction 
of an unperturbed solution of autonomous system with delay are obtained, 
and its lower estimate is given using a method which requires that only 
the Lyapunov function need be known for the system in question without 
delay. 

The results of investigating the stability of non-linear systems with delay /l, 2,' enable 
one to determine the domain of stability in the parameter space of the non-linear problem 
and of the domain of attraction of the unperturbed solution for mainly autonomous and non- 
autonomous first-order systems. 

Following /3/, the application of the Lyapunov vector function is proposed in order to 
use the methods described in /l, 2/ constructively for systems of higher order. 

Let the unperturbed motion z- 0 of the system 

31 == i, (s (f)) -/- $ Ftj (5 (t)) uj P(t - ‘I), t=const>O 
j:, 

ZEIP, UER m, fi, Fij, sj EZ C'(!L), S2_CRR", m < R 

(1) 

without delay (z-:0) by asymptotically stable, and let a Lyapunov function r(z), positive 
definite in the convex region Q,cQ be known for (1), with the time dertivative of this 
function negative definite in 9 by virtue of the system (1) @=O). Some or all (when m=n) 
functions li(t(t)) here can be identically equal to zero. 

We take t=O as the initial instant. Let the initial continuous curve be described, at 
rgr<0, by the function @(t)=Q. We shall write it in the form of a sum Q(t) =v((t)+$(t) 
where /[v(t)/<@, 'p* = const([/.jl is the Euclidean norm of a vector) and the function lli (0. Ilr (0) = 
z(O) is a solution of system (1) for z=O. We will assume, without loss of generality, that 

'p (0) = 0 and call the function q(t) the reference function. 
Let the domain Q* together with its boundary a@ defined by the equation V(Z)= u*_ II* = 

coast >O lie within Q,. Such a domain will be the domain of attraction of the unperturbed 
solution 5= 0 of system (1) at -c=O /l/. The domain may collapse when z +o. Below we 
shall consider the bounded domains only. Ifontheother hand the motion z= 0 is asymptotically 
stable in the large when r= 0 I then the bounded domain Q, can be chosen arbitrarily. 

We shall regard as the domain of attraction of the unperturbed motion 5 -= 0 of system 

Cl), the sets of points of the phase space representingtheinitial values of the solutions 
of (1) tending, as t--roo, to the unperturbed motion z = 0 for any initial functions @((I) 
belonging to the class specified above. 

Let us clarify the conditions imposed on the parameters T and th* under which the region 
n* remains within the domain of attraction of the unperturbed motion. 

Let us write the solution of system (1) (T&O) within the time interval sgt<O in the 

form of a sum 5 (2) = *(t) i Y (Q where Y (0 = v(t) and t E [- t, 01. Then, when l&+il‘ the function 

Y(fJ will, according to (l), satisfy the differential vector equation which can be written 
in the form 


